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Abstract – Slabs are one of the most widely used structural elements. The function of slabs is to resist loads normal to their
plane. In many structures, in addition to support transverse load, the slab also forms an integral portion of the structural frame to
resist lateral load.The paper presents review of computational approach to finite element analysis of slabs. The finite element method
is chosen as this is more powerful and versatile compared to other numerical methods.

Index Terms- Slabs, Plates, Boundary conditions, Finite Element Method, Displacement function, Differential equation, element
wise.

1. INTRODUCTION

SLabs are most widely used structural elements
of modern structural complexes and the rein-
forced concrete slab is the most useful discovery

for supporting lateral loads in buildings. Slabs may
be viewed as moderately thick plates that transmit
load to the supporting walls and beams and some-
times directly to the columns by flexure, shear and
torsion. It is because of this complex behaviour it is
difficult to decide whether the slab is a structural el-
ement or structural system in itself. Slabs are viewed
in this paper as a structural element. The greatest
volume of concrete that goes into a structure is in
the form of slabs, floors and footings. Since slabs
have a relatively large surface area compared with
their volume, they are affected by temperature and
shrinkage. Slabs may be visualized as intersecting,
closely spaced, grid-beams and hence they are seen to
be highly indeterminate. This high degree of indeter-
minacy is directly helpful to designer, since multiple
load-flow paths are available and approximations in
analysis and design are compensated by heavy crack-
ing and large deflections, without significantly affect-
ing the load carrying capacity. Slabs being highly in-
determinate, are difficult to analyze by elastic theo-

ries. More recently, finite difference and finite ele-
ment methods have been introduced and this is ex-
tremely useful. Methods have also been innovated
to find the collapse loads of various types of slabs
through the yield line theory and strip methods. In
addition to supporting lateral loads (perpendicular
to the horizontal plane), slabs act as deep horizon-
tal girders to resist wind and earthquake forces that
act on a multi-storied frame. Their action as girder
diaphragms of great stiffness is important in restrict-
ing the lateral deformations of a multi-storied frame.
However, it must be remembered that the very large
volume and hence the mass of these slabs are sources
of enormous lateral forces due to earthquake induced
accelerations.

2. PLATE THEORY

In continuum mechanics, plate theories are mathe-
matical descriptions of the mechanics of flat plates
that draws on the theory of beams. Plates are defined
as plane structural elements with a small thickness
compared to the planar dimensions[1].
Plates are very important structural elements. They
are mainly used as slabs in buildings and bridge
decks. They are structural elements that are bound
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by two lateral surfaces. The dimensions of the lat-
eral surfaces are very large compared to the thickness
of the plate. A plate may be thought of as the two-
dimensional equivalent of a beam. Plates are also
generally subject to loads normal to their plane.

2.1 Thin Plates

Classical Plate Theory

The Kirchhoff-Love Theory of Plates:

The Kirchhoff-Love theory is an extension of Euler-
Bernoulli beam theory to thin plates. The theory was
developed in 1888 by Love[2] The small deflection
theory of plates attributed to Kirchhoff is based on
the following assumptions[3]:

• The xy plane coincides with the middle plane of
the plate in the undeformed geometry.

• The lateral dimension of the plate is at least 10 times
its thickness.

• The vertical displacement of any point of the plate
can be taken equal to that of the point (below or above
it) in the middle plane.

• A vertical element of the plate before bending
remains perpendicular to the middle surface of the
plate after bending.

• Strains are small: deflections are less than the or-
der of (1/100) of the span length.

• The strain of the middle surface is zero or negli-
gible.

Considering the plate element shown in Fig (1), the
in-plane displacements u and v, respectively in the
directions x and y, can be expressed as:

u = −z∂w/∂x (1)

v = −z∂w/∂y (2)

where w represents the vertical displacement of
the plate mid-plane.

Because of the assumption, ’a vertical element of the
plate before bending remains perpendicular to the
middle surface of the plate after bending,’ the trans-
verse shear deformation is negligible. The in-plane
strains can therefore be written in terms of the dis-
placements as

εxx

εyy

γx

 =


∂u
∂x
∂v
∂y

∂u
∂y + ∂v

∂x



=


−z2 ∂2w

∂x2

−z2 ∂2w
∂y2

−2z2 ∂2w
∂x∂y

 = −z2


χx

χy

χxy

 (3)

The vector χ = [χxχyχxy]T is called the vector of cur-
vature or generalized strain.

Figure 1: Deformed configuration of a thin plate in
bending

Internal stresses in plates produce bending mo-
ments and shear forces as illustrated in Fig (2) and
Fig (3). The moments and shear forces are the resul-
tants of the stresses and are defined as acting per unit
length of plate. These internal actions are defined as

Mxx =
∫ h2

−h/2
σxxzdz (4)

Myy =
∫ h2

−h/2
σyyzdz (5)

Mxy =
∫ h2

−h/2
τxyzdz (6)
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Qxx =
∫ h2

−h/2
σxxzdz (7)

Qyy =
∫ h2

−h/2
σyyzdz (8)

Figure 2: Internal stresses in a thin plate.

Figure 3: Moments and shear forces due to internal
stresses in a thin plate.

In general, the force and moment intensities vary
with the coordinates x and y of the middle plane.
Assuming a state of plane stress conditions for plate
bending,

σ = [D]ε (9)

with [D] given as

[D] =
E

1− v2

 1 v 0
v 1 0
0 0 (1−v)

2

 (10)

and substituting for {ε} using Equation(3) yields the
constitutive equation

σ = −z[D]χ (11)

Substituting for σxx, σyy, and τxy in Equation(4) and
rearranging the results in a matrix notation yields

M =
h3

12
[D]χ (12)

Consider the equilibrium of the free body of the dif-
ferential plate element shown in Fig(4). Recalling that
Qx represents force per unit length along the edge dy
and requiring force equilibrium in z direction results
in

−Qxdy−Qydx + (Qx +
∂Qx

∂x
dx)dy

+(Qy +
∂Qy

∂y
dy)dx + q(x, y)dxdy (13)

which upon dividing by dxdy becomes

∂Qx

∂x
+

∂Qy

∂y
+ q(x, y) = 0 (14)

Moment equilibrium about the x-axis leads to

∂Mxy

∂x
+

∂Myy

∂y
= Qy (15)

Moment equilibrium about the y-axis leads to

∂Mxy

∂y
+

∂Mxx

∂x
= Qx (16)

Figure 4: Free body diagram of a plate element.

Substituting (15) and (16) in (14) results in the gov-
erning equation

∂2Mxx

∂x2 +
∂2Mxy

∂x∂y
+

∂2Myy

∂y2 + q(x, y) = 0 (17)

Since no relations regarding material behavior have
entered Equation (17), it is valid for all types of mate-
rials.
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2.2 Thick Plates

First-order shear plate theory

The Mindlin-Reissner theory of plates:

In the theory of thick plates, or theory of Raymond
Mindlin[4] and Eric Reissner, the normal to the mid-
surface remains straight but not necessarily perpen-
dicular to the mid-surface. As explained previously,
the Kirchhoff plate theory does not include shear de-
formations. This is an acceptable assumption for very
thin plates, but it can lead to errors, which are not
negligible in thick plates; most of reinforced con-
crete slabs are classified in this latter category. In
thick plates, the assumption that a vertical element
of the plate before bending remains perpendicular
to the middle surface of the plate after bending is re-
laxed. Transverse normal may rotate without remain-
ing normal to the mid-plane. A line originally normal
to the middle plane will develop rotation components
θx relative to the middle plane after deformation as
shown in Fig(5). A similar definition holds for θy.
Hence, the displacement field becomes

u = zθx (18)

v = zθy (19)

w = w(x, y) (20)

The strains associated with these displacements are
given as 

εxx

εyy

γxy

γyz

γzx


=



z ∂θx
∂x

z ∂θy
∂y

z ∂θx
∂y +

∂θy
∂x

z(θy − ∂w
∂y )

z(θx − ∂w
∂x )


(21)

These equations are the main equations of the
Mindlin plate theory. The theory accounts for trans-
verse shear deformations and is applicable for mod-
erately thick plates. Unlike in thin plate theory, it is
important to notice that the transverse displacement
w(x, y) and slopes θx, θy are independent. Notice also

that the thick plate theory reduces to thin plate theory
if

θx = −∂w
∂x

and

θy = −∂w
∂y

Figure 5: Deformed configuration of a thick plate in
bending.

2.3 Boundary Conditions

Given a rectangular plate with dimensions a×b×h as
shown in Fig(6). The governing equation of the bend-
ing behaviour of a thin plate is described by a fourth-
order differential equation. Hence, two boundary
conditions have to be specified on each edge[5].

2.3.1 Simply Supported Edge:

If the edge x = a is simply supported, the deflection
(w)x=a along this edge must be zero. At the same
time, the edge can rotate freely with respect to the
support, that is, there is no bending moment Mxx

along this edge: a×b×h

(w)x=a = 0

and

(Mxx)x=a = −Dr(
∂2w
∂x2 + ν

∂2w
∂y2 ) (22)
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Figure 6: Plate boundary conditions.

The condition (w)x=a = 0 along the edge x = a
means also that ∂w

∂y = ∂2w
∂2y = 0 along that edge. The

boundary conditions for a simply supported edge
may also be written as

(w)x=a = 0 and
∂2w
∂x2 = 0 (23)

The first boundary condition in (23) is a kinematic
boundary condition and the second one is a dynamic
or natural boundary condition.

2.3.2 Built-in or Clamped Edge:

If the edge x = a is built-in or clamped, along this edge
the deflection and the slope of the middle plane must
be zero; that is,

(w)x=a = 0 and
∂w
∂x

= 0 (24)

These boundary conditions are both kinematic and
need to be imposed.

2.3.3 Free Edge:

If the edge x = a is entirely free, it is natural to assume
that along this edge there are no bending and twisting
moments, and also no shear force; that is

(Mxx)x=a = (Mxy)x=a = (Qxz)x=a = 0 (25)

Within the thin plate theory, these three conditions
are combined into two conditions, namely

(Mxx)x=a = 0

and

(Qxz +
Mxy

∂y
)x=a = 0 (26)

The term Qxz +
Mxy
∂y is called the ’effective shear

force’ or the ’Kirchhoff shear force.’ The boundary
conditions at a free edge are all natural and do not
need to be imposed.

3. HISTORICAL BACKGROUND OF FINITE ELE-
MENT METHOD

The birth of variational calculus and the principle of
virtual work goes back to the 17th and 18th century,
and the first draft of a discrete variational method
with "element wise" triangular shape functions was
given by Leibniz (1697). First analytical studies were
made by Schellbach (1851) and then, already with nu-
merical results, by Rayleigh (1877). The mathemati-
cian Ritz (1909) marks the first discrete (direct) vari-
ational method for the linear elastic Kirchhoff plate,
and the engineer Galerkin (1915) published his sem-
inar article on FEM for linear elastic continua, pos-
tulating the orthogonality of the residua of equilib-
rium with respect to the test functions, but both, Ritz
and Galerkin, used test and trial functions within the
whole domain as supports. In 1921, Westergaard and
Slater[6] correlated the results of experiments in slabs
with the analytical theories at the time, so that build-
ing regulations for the slabs can be made. In 1943
Courant [7] made an effort to use piecewise contin-
uous functions defined over triangular domain. Af-
ter that it took nearly a decade to use this distribu-
tion idea.In fifties renewed interest in this field was
shown by Polya[8], Hersh[9] and Weinberger[10].In
1953 Sutherland, Goodman and Newmark[11] ob-
tained an approximate numerical solution for the case
of slabs supported on elastic beams.The Ritz energy
method is used to obtain solutions for an interior
panel of a plate or slab which is continuous over
a rectangular grid of flexible beams supported by
columns at their intersections. Argyris and Kelsey[12]
introduced the concept of applying energy principles
to the formation of structural analysis problems in
1960. In the same year Clough[13] introduced the
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word ’Finite Element Method’. In sixties conver-
gence aspect of the finite element method was pur-
sued more rigorously. One such study by Melesh[14]
led to the formulation of the finite element method
based on the principles of minimum potential energy.
Soon after that de Veubeke[15] introduced equilib-
rium elements based on the principles of minimum
potential energy.Pion[16] introduced the concept of
hybrid element using the duel principle of minimum
potential energy and minimum complementary en-
ergy. In Late 1960’s and 1970’s, considerable progress
was made in the field of finite element analysis. The
improvements in the speed and memory capacity of
computers largely contributed to the progress and
success of this method. In the field of solid mechanics
from the initial attention focused on the elastic anal-
ysis of plane stress and plane strain problems, the
method has been successfully extended to the cases
of the analysis of three dimensional problems, stabil-
ity and vibration problems, non-linear analysis. In
1972, Gamble[17] presented the results of a study of
the influence of the stiffness of the supporting beams
on the distribution of moments within typical interior
panels of reinforced concrete floor slabs.The results
are presented in terms of a beam stiffness parameter
and the panel shape. It is shown that once the beam
stiffness parameter exceeds 2 the moment distribu-
tions are relatively insensitive to further increases in
beam stiffness. In 1973, Ramesh and Datta[18] devel-
oped a yield-line theory taking into account the com-
pressive membrane action present in the slab-beam
system having different degrees of edge restraint and
different percentages of steel in the slab.The theory
uses a rigid plastic strip approximation and takes into
account the lateral bowing of the edge beam.

4. FINITE ELEMENT METHOD

4.1 Introduction

The Finite Element Method (FEM) is a numerical
technique to find approximate solutions of partial dif-
ferential equations. It was originated from the need
of solving complex elasticity and structural analysis
problems in Civil, Mechanical and Aerospace engi-

neering.
The finite element method[19] can be considered as a
generalized displacement method for two and three
dimensional continuum problems. It is necessary to
discretize the continuum into a system with a finite
number of unknowns so that the problems can be
solved numerically. The finite element procedure can
be divided into the following steps:

• Idealization of the continuous surface as an assem-
bly of discrete elements.

• Selection of displacement models.

• Derivation of the element stiffness matrix.

•Assembly of element stiffness matrix into an overall
structure stiffness matrix.

• Solution of the system of linear equations relat-
ing nodal point loads and unknown nodal displace-
ments.

• Computation of internal stress resultants by use
of the nodal point displacements already found.

4.2 Formulation of the Problem

4.2.1 Displacement Function:

In order to assure convergence to a valid result by
mesh reinforcement, the following three sacred rules
have emerged for the assumed displacement func-
tions:

• The displacement must be continuous within the
element and the displacements must be compatible
between adjacent elements. For plane stress and
plane strain elements, continuity of the displacement
functions along is sufficient, whereas for bending ele-
ments, continuity of both the displacement and slope
is needed.

• The displacement function must include the states
of constant strain of the element. This seems to be the
most sacred of all the rules, since eventually, by mesh
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reduction, one is evitable going to reach small region
where the strains are constant.

• The displacement function must allow the element
to undergo rigid body motion without any internal
strain. For plane stress and plate bending elements, it
is easy to establish displacement functions satisfying
all these three requirements.

u(x, y) = a1xy + a2x + a3y + a4

v(x, y) = a5xy + a6x + a7y + a8

w(x, y) = a9x3y + a10x3 + a11x2y + a12x2

+ a13xy3 + a14xy2 + a15xy + a16x

+ a17y3 + a18y2 + a19y + a20

Alternatively, in matrix form we can write this sym-
bolically as follows:

{u} = [P]{ai} (27)

Where {u} is vector of slab displacement and [P] is
matrix of displacement functions. Here the rectangu-
lar co-ordinate system is considered. The degree of
freedom considered at each node (corner) of the ele-
ment is u, v, w, wx and wy.

4.2.2 Element Stiffness Matrix:

To simplify the derivation of the element stiffness ma-
trix, a more convenient form of nodal displacement
parameters with five degrees of freedom per node is
listed as follows:

[ui]T =

u1, v1, w1, w1x, w1y, u2, v2, w2, w2x, w2y,

u3, v3, w3, w3x, w3y, u4, v4, w4, w4x, w4x

Where, wix = (δw/δx)i, wiy = (δw/y)i ; i = 1 to 4,
stands for the node number of the node of an ele-
ment.
Substituting the values of co-ordinates of four nodes
in the three displacement function and two deriva-
tives of w stated above, we get the nodal displace-
ments of an element as follows:

{ui} = [H]{ai} (28)

Where, {ui} is vector of nodal displacement co-
ordinates and [H] is called transformation matrix.
The strain displacement relationships used in the
analysis of this of slab element may be expressed as:

{e} = [δ]{u} (29)

Therefore substituting Equation(27) into Equa-
tion(29) we get the strain expressed in terms of dis-
placement parameters as follows:

{e} = [δ]{u}
= [δ][P]{ai}
= [B]{ai} (30)

Where [B] is called strain matrix is a function of x and
y co-ordinates.
The stress matrix can be expressed as follows:

{AN} = [D]{e} (31)

The strain energy developed in the element is ex-
pressed by:

Ut = 1/2 ∗
∫∫

[AN]T{e}dxdy (32)

Substituting the expression for [AN] and e in the
Equation(31) we get the strain energy.

Ut = 1/2 ∗ {ai}T[
∫∫

[B]T[D][B]dxdy]{ai}

= 1/2{ai}[U]{ai} (33)

where [U] =
∫∫

[B]T[D][B]dxdy

Now substituting {ai} from Equation(28) into Equa-
tion(33) and finally making derivatives of strain en-
ergy Ut with respect to the nodal displacement pa-
rameters, we get the required element stiffness matrix
[S] and are given by:

[S] = [H−1]T[U][H]T
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4.2.3 Overall Stiffness Matrix:

The element stiffness matrix relates quantities de-
fined on the surface. Therefore, co-ordinate transfor-
mations are completely avoided and the overall stiff-
ness matrix SFF of the slab structure is assembled by
direct summation of the stiffness contributions from
the individual elements. The degree of freedom for
the overall stiffness matrix is obtained by substitut-
ing joint restraint form, the total number of displace-
ment co-ordinates. The overall stiffness matrix is first
partitioned so that the terms pertaining to the degrees
of freedom are separated from those for the joint re-
straints. Then the matrix is rearranged by interchang-
ing rows and columns in such a manner that stiffness
corresponding to the degrees of freedom is listed first
and those corresponding to joint restraints are listed
second. Such a matrix is always symmetric. To com-
puter time and storage, only the upper band of the
stiffness matrix SFF (for free joint displacements) is
constructed.

4.2.4 Load Matrix:

The vertical gravity load (mainly self-weight) is the
major load for roof slab. The load intensity ′QL′ is
uniform over the area of a slab of uniform thickness.
This load intensity ′QL′ can be resolved into three
components at a point in the three directions x, y and
z as follows in a matrix. The above-distributed load
is replaced by an equivalent nodal load matrix {AQ}
for each element. This load matrix {AQ} is obtained
by equating virtual work done by the uniform load
{Q} and the nodal loads {AQ}. According to the
standard formulae from texts:

{AQ} =
∫ A/2

−A/2

∫ B/2

−B/2
[H−1]T[P]T[Q]dxdy (34)

Such a consistent load matrix will truly represent the
distributed gravity load ′QL′. But the laborious pro-
cess of Equation(34) can be avoided by using approxi-
mate overall nodal matrix {AQ}. This can be worked
out as follows: The total vertical load on an element
is assumed to be equally shared by its four nodes.
The z components of this vertical load are the element
nodal loads corresponding to displacements w. Con-

tributions from all elements connected at a node to-
gether form the final values of nodal loads for that
node. Hence in the overall load matrix, out of five
load values for each node, only the third will be non-
zero.

4.2.5 Expression for Stresses / Moments:

From Equation(28) the expression for{ai} is found as
follows:

{ai} = [H]−1{ui}

Using these values of {ai} and combining Equa-
tion(30) with Equation(31), we get the matrix of resul-
tant stresses / moments at any point (x, y) in terms of
nodal displacements as follows:

{AN} = [D]{e}
= [D][B]{ai}
= [D][B][H]−1{ui} (35)

5. SOME PREVIOUS WORK ON FINITE ELE-
MENT METHOD

H.G.Kwak[20], worked on the finite element anal-
ysis of the monotonic behaviour of reinforced con-
crete beams, slabs and beam-column joint sub assem-
blages. H.M.Marzouk, ZhiweiChen[21] presented
an analytical investigation on the behaviour of re-
inforced high-strength concrete slabs. A plasticity-
based concrete model is used for the finite element
analysis. M. W. Bari[19], worked on a slab ele-
ment which is developed on the basis of conven-
tional slab theory expressed in terms of rectangu-
lar co-ordinates and displacement. A computer pro-
gram is developed for solution of finite element equa-
tions as well as to check rigid body modes and to ob-
tain the results. M.M.Smadi, K.A.Belakhdar[22] de-
veloped a nonlinear finite element code to suite the
analysis of normal and high strength concrete slabs.
A software called NLFEAS (Non-Linear Finite Ele-
ment Analysis of Slabs) was developed to predicate
and study the three dimensional response of rein-
forced concrete slabs of different grades, variables
and boundary conditions under monotonically in-
creasing loads. Rifat Sezer[23],worked on finite el-
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ements method (FEM)which was used for the non-
linear analysis of reinforced concrete (R/C) plates
under incremental loading up to failure load. Lay-
ered composite material model (LCMM) was used
for the modeling of reinforced concrete plates. Piotr
Rusinowski[24] worked on concrete slabs with open-
ings which are usually designed with help of tradi-
tional rules of thumb proposed by building codes.
Such methods, however, introduce limitations con-
cerning size of openings and magnitude of applied
loads. Furthermore, there is a lack of sufficient in-
formation and instructions are needed to design fibre
strengthening of cut-outs in existing concrete slabs.
Debajyoti Das [25], worked on a element formula-
tion for the nonlinear analysis of thick rectangular
and skewed reinforced concrete slab subjected to ex-
ternal mechanical load to predict its behaviour start-
ing from the application of the load upto the failure.
Priya Bansal[26], worked on strengthening of rein-
forced concrete (RC) structures is frequently required
due to inadequate maintenance, excessive loading,
change in use or in code of practice and exposure
to adverse environmental conditions.Rifat Bulut[27],
developed a finite element computer program to an-
alyze slabs on elastic half space expansive as well as
compressible soils. Mindlin orthotropic plate theory
is adopted for structural analysis of ribbed or con-
stant thickness slabs. The foundation soil is assumed
to be an isotropic, homogeneous, and elastic half
space. Gunjan Ashok Shetye[28], worked on response
of reinforced concrete slabs subjected to blast loading
as they can be used as protective structures around
the main structure. Trevor D. Hrynyk[29], provided
a procedure for improved nonlinear analysis of rein-
forced concrete (RC) slab and shell structures. The
finite element program developed employs a lay-
ered thick-shell formulation which considers out-
of-plane (through-thickness) shear forces, a feature
which makes it notably different from most shell
analysis programs. Khalil Belakhdar[30], worked on
an implementation of a rational three-dimensional
nonlinear finite element model for evaluating the
behaviour of reinforced concrete slabs strengthened
with shear bolts under transverse load. J. Ashley
Warren[31],investigated on the tradeoffs between ac-

curacy and efficiency for various finite element mod-
eling techniques used for determining mode shapes
and natural frequencies of a fully composite, con-
crete slab on steel girder bridge. Ahmed Shaat[32],
worked on the numerical simulation of the ultimate
behaviour of 85 one-way and two-way spanning lat-
erally restrained concrete slabs of variable thickness,
span, reinforcement ratio, strength and boundary
conditions .F.J Vecchio[33], investigated a nonlinear
finite element shell analysis algorithms can be sim-
plified to provide more cost effective approximate
analysis of orthogonally-reinforced concrete flat plate
structures. Shatha S. Kareem[34] ,worked on the
numerical study to simulate the behavior six spec-
imens of two-way RC slab of normal strength con-
crete (NSC), high strength concrete (HSC) and light
weight concrete (LWC) with two steel ratio of 0.005
and 0.002 under concentrated load. SK Md Nizamud-
Doulah[35], worked on non linear finite element
method using layered concept across the thickness
has been adopted to study its suitability for the analy-
sis of reinforced concrete slabs with special emphasis
on skew slabs. Prakash Desayi[36], worked on two-
way structural action, post-cracking non-linear be-
haviour and development of membrane action com-
plicate the analysis and estimation of the ultimate
strength of the slab. Neriman[37], worked on de-
sign of reinforced concrete structures against extreme
loads, such as impact and blast loads, is increasingly
gaining importance. Jianping jiang[38], developed
the finite element model, which includes the bond
slip, dowel action and the tension stiffening effects
in reinforced and prestressed concrete slabs. Brian
J. Henz[39], worked on the use of object-oriented
programming techniques in development of parallel,
finite element analysis software enhances software
reuse and makes application development more ef-
ficient. B.Belletti[40], studied the new fib Model Code
2010 for the design shear resistance of a reinforced
concrete (RC) structure can be evaluated through an-
alytical and numerical calculation methods that fall
into four different levels of approximations, the com-
plexity and the accuracy of the calculated shear resis-
tance increases with increasing the level of approxi-
mation. Mohamedien, A.R[41],developed a finite ele-
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ment model for Double Skin Composite (DSC) panels
subjected to quasi-static loading. A series of quasi-
static finite elements models are used to analyze de-
formation and energy absorption capacity of such
system, when perforated by rigid penetrator with
conical nose shape. Songwut Hengprathanee[42],
worked on linear and nonlinear finite element anal-
yses for the investigation of rectangular anchorage
zones with the presence of a support reaction. The
investigation is conducted based on four load config-
urations consisting of concentric, inclined concentric,
eccentric, and inclined eccentric loads. Rodolfo Anto-
nio Hutchinson Marin[43], created a Finite Element
Routine for the Linear Analysis of Post-Tensioned
beams using the program CALFEM developed at the
division of Structural Mechanics in Lund Univer-
sity, Sweden. The program CALFEM and our own
made files were written in MATLAB, an easy to learn
and user-friendly computer language. Riyad Abdel-
Karim[44] , worked on SAP2000 program which is
used to analyze single simply supported twoway
ribbed slab models from 5 x 5m to 5 x 25m, supported
on beams of different stiffnesses. This concentrates on
the distribution of the loads to the perimeter beams
and to the ribs in both directions.Y. M. Park[45] , de-
veloped a equivalent frame method (EFM) for two-
way slabs as a simple approximate method. Current
design codes (ACI 318-05, Eurocode 2 and BS 8110)
permit the EFM for the analysis of two-way slab sys-
tems under gravity loads, as well as lateral loads such
as seismic loads. K.U. Muthua[46], provided the re-
sults of an analytical method proposed to predict the
load deflection behaviour of partially restrained slab
strips. The effect of deflection prior to yield line load
on the development of compressive membrane forces
was incorporated in the theoretical analysis. An ex-
perimental programme was designed to cast and test
ten partially restrained slab strips with different edge
rigidity. Freydoon Arbabi[47], provided a common
procedure for the analysis of concrete buildings with
two-way slabs is to reduce the slab along with other
components of the building to a series of equivalent
frames representing portions of the building between
center-lines of spans. Young-Mi Park[48], studied on
calibration factor for the effective beam width, which

is able to incorporate the effect of lateral stiffness
provided by the edge beams of perimeter moment-
resisting frames.
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